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The dynamics of the driven dissipative two-state system is formulated in terms of an exact nonconvolutive
master equation. The kernel is expressed as power series in the intersite coupling, in which the lowest order
corresponds to the familiar noninteracting-blip approximation. We use this formalism to calculate the kernel
systematically in all orders of the intersite coupling for weak damping, and we solve the affiliated master
equation for high-frequency driving in analytic form. Our approach finds straightforward generalization to any

multistate dissipative tight-binding system.

PACS number(s): 05.30.—d, 05.40.+j, 33.80.Be

The problem of a tight-binding (TB) particle coupled to a
thermal bath is of relevance for a great variety of transport
processes in physics and chemistry. For the simplest case of
two states, a simple and powerful approximation, the
noninteracting-blip approximation (NIBA), has been devel-
oped by Leggett ef al. [1]. For the case of dissipative multi-
state systems (N>2), the concept of the NIBA has been
generalized to the noninteracting-cluster approximation
(NICA) [2]. Within this approximation, the dynamics is rep-
resented by a single (NIBA), or by a set (NICA) of retarded
master equations, in which the kernel or kernel matrix is
defined by the sum of those paths which interpolate between
two diagonal states of the reduced density matrix without
visiting any diagonal state at intermediate times. For N=2
(NIBA), the kernel is quadratic in the intersite coupling,
while for N>2 (NICA), already any even number of hops
contributes to the kernel matrix.

An important question is to which degree the dissipative
tunneling dynamics is influenced or may be controlled by
external time-dependent fields. Recently, the NIBA has been
applied to the driven damped two-state system [3-7]. Again
one finds that the dynamics is described in terms of retarded
master equations, but they are no more in convolutive form.
The various limits in which the NIBA becomes asymptoti-
cally correct have been discussed for a static bias in Refs.
[1,8]. For driven systems, the limits were found to be
roughly the same [6].

In this Rapid Communication, we show that the exact
dynamics of the driven dissipative multistate system can be
described by time-retarded nonconvolutive master equations
as well. The kernel is represented by a power series in the
intersite coupling, and the NIBA corresponds to the lowest
order. We discuss a reduction scheme which is possible for
high-frequency driving, and we present an approach that al-
lows to compute the dynamics for weak damping systemati-
cally in the parameter regime where the NIBA fails. Here we
mainly concentrate on the case of two states, and we shortly
explain the generalization to any multistate system.

For a qualitative understanding of the environmental ef-
fects on the driven TB dynamics, we study the Hamiltonian
H=H,+H,, where Hy represents the two-state system in
the standard Pauli spin representation (A=1),
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HOZ%{_AUX+[EO+éf(t)]O-z}' (1)

Here, A describes the coupling between the two states of
distance a, and € is a static bias energy. Further, we applied
an external time-dependent force €f(¢)/a. The environment
is modeled by a term H; describing a harmonic oscillator
bath and a bilinear coupling in the coordinates of the bath
and of the two-state system.

Suppose that at times <<t the particle is held at the site
o,=1 with the bath having a thermal distribution. We then
wish to compute the probability {(o,(z,t9))=P(¢,t)
=P(1,t;1,t9) — P(—1,¢;1,ty) at times >t for this factoriz-
ing initial state. After tracing out the thermal bath [1,8], all
environmental effects are captured by the twice-integrated
bath correlation function [1,8] (8= 1/kT)

J(w) cosh[ wB/2]—cosh[ w(B/2—it)]
w? sinh[ w8/2] ’

0w=-2|"dw

where J(w) is the spectral density of the heat bath.

Upon summing over the history of the system’s visits of
the four states of the reduced density matrix, we find the
exact formal solution for the evolution of the driven damped
system in the form of an expansion in the number of time-
ordered tunneling transitions. It reads [3]

- 4 Iop ty
P(t,tg)=1+ > (—Az)nf dtznj dty, - f dt,
n=1 to ty 1o

X2 2

(F(“F)C(*)_'_F(*)C(*)) (2)
{gj;il} n n n n 2

CM=cos®,; C\)=sind,. (3)

n

Here the & charges label the two off-diagonal states of the
reduced density matrix, while the sum over the diagonal
states visited at intermediate times has already been per-
formed. The phase ®, describes the influence of the static
and of the time-dependent biasing forces,
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an:]Z] Eleg(trj— 1ty 1) +g(t) —g(trj-1)],  (4)

where g(t)=ef'dt’ f(¢').

All the dissipative influences are in the influence func-
tions Fﬁlt). Before presenting their forms, we introduce
some terminology. The periods ,;<t'<t,;,, in which the
system is in a diagonal state, are usually referred to as so-
journs, and the periods t,; _;<<t'<t,;, in which the system
stays in one of the two off-diagonal states, are called blips
(cf. Refs. [1,8]). The bath correlations are conveniently ex-
pressed in terms of the functions

Q;x=0(t;—t1), (%)
A ’ ’ ’
ANjx=02j 0+t 02j 1,6~ Q2j ok~ Q2j—1,2k—1>
—_ n ” ” ”n
Xj,k—QZj,2k+1 + Q2j71,2k_Q2j,2k— Q2jA1,2k+1 s

where Q' (¢) and Q" (¢) are the real and imaginary part of the
bath correlation function Q(f) respectively. The function
A describes the interblip correlations of the blip pair
{j»k}, while the function X, describes the correlations of
the blip j with a preceding sojourn k. For k=0, we have
Xj,O:QIZIj,l _ngﬂ,l .

Then, all intrablip and interblip correlations of n blips are
combined in the expression

n n j—1
G,=exp —231 Qé,’,zj—l_,zz 1(21 E&N k-
j= j=2 k=

Upon introducing the influence phases describing the corre-
lations between the kth sojourn and the n—k succeeding
blips, nn,k=2;'=k+1§ij,k, the full influence functions take
the compact form

n—1

FL”=G,,k[[0 cosn, s FL)=F\"tany,,.  (6)

In the exact formal solution (2), all the flip times {¢;} are
correlated with each other by the bath correlation functions
(5) encapsulated in the influence functions F{* . In addition,
they are also influenced by the actions g(t;) of the external
field which are regulating the bias phases in @, . Notwith-
standing these formidable intricacies, the full dynamics of
the conditional probabilities P(i,t;j,ty) can be described by
a set of exact generalized master equations (GME’s)

. t
P(i,t;j,t0)= >, f dt' K(i,t;k,t" ) P(k,t'3j,t0).  (7)
k )

The kernels fulfill the sum rule 2 ,K(i,¢;j,¢") =0, which pro-
vides conservation of probability. Upon introducing
K™ =K(1,1)=K(—1,—1), and using P(1,1)+P(—1,1)
=1, Eq. (7) can be rewritten as a GME for P(t,t),

P(t,t0)=f:dt'[K”)(t,t')P(t',t0)+1<<—>(t,t')]. (8)

0
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To proceed from (2) to (8), we define modified influence
functions F E,i) involving suitable subtractions with products
of lower order influence functions,

(DR, g

1" J

n
Fo=F-3, (<1
><5m1+~-+mj,n‘

Here the inner sum is over positive integers m;. For in-

stance, the n=3 term reads

e

F§)=F{)—F{OFS —FOFS + FUOFDRS)

By definition, each subtraction involves again time ordering
for the 2n flip times with #; being the rightmost. In the
subtracted terms, the bath correlations are only inside of each
of the individual factors F fni) , and there are no correlations
between these factors. '

With the modified influence functions F{*), the kernel
K)(¢,t") of the GME is defined by the series expression

* t t
K(I)(t,f'):z (_Az)"f dt2n—1"'f3dt2

n=1 t t'

x27" > F®clH), ()]

{§j==1}

The product function I:“E,t)CEf) depends on 2n flip times,
and the first and the last one are identified with ¢’ and ¢,
respectively. All intermediate flip times are integrated over in
the expressions for the kernels K(*)(z,¢").

Upon comparing the iterative solution of (8) and (9) with
the time derivative of (2), it is straightforward to see that
they are identical. Thus the GME (8) with the kernels (9)
describes the exact dynamics of the damped, externally
driven TB particle.

In practical calculations, it is suggestive to truncate the
series (9) at a given order, and then solve the GME numeri-
cally without further approximation. For instance, if we ne-
glect all interblip correlations (A; ;=0) and all blip-sojourn
correlations (X; ;=0 for j#k+1), the influence functions
F{*) are zero for all n>1, and the kernels reduce to the
lowest order expressions

K\ (t,0)=— A% 2" eos[ Q" (1—1")]C{H(1,t),
KT (t,t")=—=A% 2"~ sin[Q" (1~ 1")]1C{ T (1,8").

It is clear from these prescriptions that the resulting GME
fully corresponds to the familiar noninteracting-blip approxi-
mation [1]. Now, by taking into account subsequent terms of
the expansion (9), corrections to the NIBA may be calculated
systematically.

In the evaluation of (8) with (9), one encounters two ma-
jor difficulties which have different origin.

The first difficulty is due to the nonconvolutive form of
the bias phase @, . For periodic driving with fundamental
frequency (), the property g(z)=g(t+2m/{) suggests to
expand K(*)(¢,¢") and P(z,t') into Fourier series,
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P(t,ll)z 2 pm(t_tl)e“imﬂt',
m

K& (1= k' (1—1")e im0,
m

Then we obtain coupled integro-differential equations of
convolutive type for the Fourier functions p,(7),

pnm:f dr'[z k(7= ) py (7 )e O
0 m

+k (r—1)e 0T (10)

which may be solved by Laplace transformation and subse-
quent use of recursion relations [6].

The second remaining difficulty originates from the bath
correlations. These make the analytical calculation of higher
order terms in the series (9) extremely troublesome. Even the
numerical computation of the kernels is not so straightfor-
ward because of the destructive interference of the numerous
contributions.

So far, apart from the discussion of the NIBA, our treat-
ment has been exact. Moreover, the form (7) of the GME is
exact for any N-state TB system, if we identify P(i,z;j,t")
and K(i,t;j,t") with the complete set of N XN conditional
probabilities and kernels, respectively. If the kernels are re-
stricted to the subsets of irreducible neutral &-charge clusters,
Eq. (7) describes the NICA.

In the remainder, we restrict the attention to the two-state
system, and we consider the limit of nonadiabatic driving
and weak damping.

When the characteristic memory time 7x of the kernels is
of the order of 27/€) or smaller, many terms p,(z—¢') con-
tribute to P(z,¢t"). With increasing frequency (2, the period
2ar/Q) eventually gets small compared to 7, and the set of
equations (10) becomes restricted to the lowest Fourier com-
ponents. For high frequency, the essential dynamics of
P(t,t") is described by po(t—t'). The reduction to the
n=0 term is equivalent to taking the average of the phase
factor of the driving field for fixed length ¢—¢’'. Then
(K& (t,t"))y=k$™)(t—1"), and Eq. (10) reduces to a single
convolutive master equation,

Po(7)= J‘Ordr’[kgﬂ(r— )po(1)+k§ (7= 1)].

In this limit, the steady state reached at long times does not
show periodic oscillations, since it is represented by the
n=0 Fourier term only. The characteristic memory times of
the kernels depend on a subtle interplay of the various in-
verse time scales A, €;, €, and of the intrablip and interblip
correlations. While the former are temperature independent,
the bath correlations depend strongly on temperature. Typi-
cally, the range of the bath correlations is increased as tem-
perature is decreased. It is intuitively clear that, for suffi-
ciently high frequency, we may perform the average of the
phase factor of the driving field separately for each indi-
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vidual blip contributing to (9). Upon taking the average for
fixed blip length 7;=t,;—,;,_;, we have

(C{P(ty, 105 1))=c{V (7)) =cos(&7))bo(T)),
(C{ U ta),t2j-1))y=c{7 (7)) =sin(€y7;)bo( 7).

For harmonic driving, f(¢)=cos({}), the function by(7)
takes the form b (7) =J((2€/Q)sin(Q27/2)), where Jo(z) is
a Bessel function of the first kind.

For weak damping, nonzero bias, and low temperatures,
the noninteracting-blip assumption breaks down, since the
bath correlations A ; and X ; contribute to effects in linear
order of J(w). We have been able to sum the full series (9)
in the weak-damping limit. To linear order in the bath corre-
lations, we find following Ref. [9] (we drop the n =0 Fourier
index henceforth)

KH(r)=—A2(N[1-0' ()] - fordt3f0'3dt2

XA T (r=13)p O (t3—15)c (1)

X[Q(T)+Q'(t3—1)— Q' (t3)— Q' (7—1,)],
K(1)= =A% (1Q"(7) - f dts f P dr,
0 0

XA (r—13)p O(t3—1,)c{ (1)
X[Q"(1)—Q"(t3)]. (11)

In these exact weak-coupling expressions, the respective first
term represents the NIBA. The residual term has been writ-
ten in the form of a double-blip contribution dressed at the
interblip interval t;—¢, with the term p‘®(t3—1t,) which
takes into account all the tunneling transitions of the un-
damped system in this time regime. In the weak-damping
limit, the flip times in the second terms of k(i)(r) in (11) are
free of bath correlations except the ones belonging to the first
and to the last blip.

It is convenient to solve the GME for p(¢) by Laplace
transformation. The Laplace transform of p(¢) is represented
by a set of simple poles, if the Taylor expansion of the Bessel
function in by(7) is truncated at a given order (our notation
covers this general case). For €/{) <1, it is sufficient to retain
the terms of order (&/Q)2. In this approximation, the un-
damped driven system is characterized by three bias frequen-
cies, e;=€p, €,=€yt+ ), €3=¢€,— {2, and by three tunnel-
ing frequencies v;,v,, and v;. The squares of these

frequencies are the solutions of a cubic equation for V2,

v®—a,v*+a,v>—ay=0. The coefficients are

ap=€eresei+[ATele5+ cycl],
a,=A}(e3+€3)+ 565+ cyel,
a,=€+ A+ cycl,
with the modified tunneling matrix elements

A’=(1-&20%)A%  A2=A2=(&2202)A%
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The undamped system shows coherent oscillations,

pO(1)=po+ 2 pjcos(v;t) (12)

with the amplitudes (p1,p,,p3 cycl.)

(i-eh0i-D0i-) 11 €

b=
vl(vl—vz)(vl—v3) j=1 v

obeying the sum rule 23’-’:0;7]: 1.

Upon inserting (12) and the spectral representation for
Q(7), and interchanging the frequency integral with the time
integrals, the kernels (11) can be calculated in explicit form.
As a result of the bath influence, the poles of the Laplace
transform of p(®)(¢) are shifted from the imaginary axis into
the negative-real halfplane, and there appears an additional
pole at the origin. The residuum of this pole (denoted by
P«) represents the equilibrium population reached at long
times. The dynamics is described by the expression [10]

3
p(1)=2 pjeos(wt)e” '+ (py—po)e” "'+ p..
=1

with the damping rates and equilibrium distribution

3
w
Y0=75 2 AFS(w),
i=1
T2
Yi=7 ATS(v)+CF S(0)+22 [CF_S(vi+w)

C?JS(I v;— Vi‘)]} s

2

Dow=— 2 ]ZlA]B]J(v)
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The function S(w) depends linearly on the spectral density
J(w) and on the familiar function coth(Bw/2) which de-
scribes emission and absorption of a single boson with fre-
quency w at thermal equilibrium,

S(w)=(a*/m)J(w)coth(Bw/2).
The amplitudes A; ,B;,C; ; are weighting the various single-

boson processes which contrlbute to the rate expressions, and
they are given by

viA; A}
=\Pop Z ————;  Bi=\popi kZl Vz_k
- - 1

e(vi— €

(v, v; )EkAk

J——E

=1 (v; —ek)(v —ek)

These expressions describe the dynamics in the weak-
coupling limit for any non-sub-Ohmic spectral density. In the
super-Ohmic case, lim,_ o/(w)/w—0, the term S(0) is
zero, while for Ohmic damping S(0)>=7. In the sub-Ohmic
case, S(0) diverges. This indicates that sub-Ohmic damping
is so effective that there is no consistent weak-coupling limit
of the form discussed here.

Within the NIBA, the relaxation rate vy, takes the form
702(W/Z)pOEi(Aiz/eiz)S(ei), while the damping rates v;
(j=1,2,3) are linear combinations of S(v;*¢;) where
i=1,23. Also, p, is expressed in terms of €;, instead of the
proper frequencies v; . It is now clear that the NIBA does not
correctly take into account the energy shifts induced by tun-
neling and the amplitudes for the various single-phonon pro-
cesses. We have to return to the more advanced treatment
given here whenever the energy shifts induced by tunneling
are essential.
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